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a b s t r a c t

A new implemented QSPR method, whose descriptors achieved from bidimensional images, was applied
for predicting 13C NMR chemical shifts of 25 mono substituted naphthalenes. The resulted descriptors
were subjected to principal component analysis (PCA) and the most significant principal components
(PCs) were extracted. MIA-QSPR (multivariate image analysis applied to quantitative structure–property
relationship) modeling was done by means of principal component regression (PCR) and principal
component-artificial neural network (PC-ANN) methods. Eigen value ranking (EV) and correlation rank-
eywords:
ultivariate image analysis (MIA)
uantitative structure–property

elationship (QSPR)
rincipal component-artificial neural
etwork (PC-ANN)

3C chemical shift

ing (CR) were used here to select the most relevant set of PCs as inputs for PCR and PC-ANN modeling
methods. The results supported that the correlation ranking-principal component-artificial neural net-
work (CR-PC-ANN) model could predict the 13C NMR chemical shifts of all 10 carbon atoms in mono
substituted naphthalenes with R2 ≥ 0.922 for training set, R2 ≥ 0.963 for validation set and R2 ≥ 0.936 for
the test set. Comparison of the results with other existing factor selection method revealed that less

ained

aphthalene derivatives

accurate results were obt

. Introduction

Nuclear magnetic resonance (NMR) is a physical phenomenon
ased upon the quantum mechanical magnetic properties of an
tom nucleus. Magnetic nuclei, like 1H and 13C absorb radiofre-
uency energy when placed in a magnetic field of strength specific
o the identity of the nuclei. When this absorption occurs, the
ucleus is described as being in resonance. Different atoms within a
olecule resonate at different frequencies at a given field strength.

he observation of the resonance frequencies of a molecule allows
user to discover structural information about the molecule. This
henomenon is known as the chemical shift and is the most impor-
ant characteristic of a nucleus in terms of NMR. The shift of an
ndividual atom depends on its atomic properties, such as the type
f nucleus, its hybridization state and the overall electronic envi-
onment surrounding the nucleus [1].

In various fields of chemistry such as the investigation of natural
roducts or the design of new compounds, scientists often need to
ither determine the structure of an unknown or new compound or

o verify a hypothetical chemical structure. This process, known as
tructure elucidation, is based on the analysis of available spectral
ata. Nuclear magnetic resonance (NMR) spectroscopy is certainly
ne of the main analysis methods applied to these challenges and

∗ Corresponding author. Tel.: +98 391 3202416.
E-mail addresses: garakani@vru.ac.ir, z garakani@yahoo.com (Z. Garkani-Nejad).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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by the eigen value ranking procedure.
© 2010 Elsevier B.V. All rights reserved.

is a powerful technique for acquiring highly informative spectra
associated with a structure.

Quantitative structure–activity/property relationship
(QSAR–QSPR) studies, as one of the most important areas in
chemometrics, give information that is useful for molecular design
and medicinal chemistry [2–5]. QSAR/QSPR models are mathe-
matical equations relating chemical structure to a wide variety of
physical, chemical, biological and technological properties.

Jensen et al. [6] have used 33 polycyclic aromatic compounds
with 24 different aromatic ring backbones, to generate linear
regression models for 13C chemical shift calculation. The chem-
ical environment of each carbon atom was described by 2–11
parameters, obtained from the structural information (steric and
electronic) calculated by Huckel method. Kvasnicka et al. [7] have
published one of the first applications of using an artificial neural
network for predicting and classifying 13C chemical shifts based
on functional group descriptors. The mathematical basis for 13C
NMR chemical shifts prediction using increments was discussed
by Chen and Robien [8]. The incremental model was also used
by Thomas et al. [9] for the prediction and assignment of the 13C
NMR spectra of substituted benzenes, naphthalenes and biphenyl
compounds. Svozil et al. [10] have used artificial neural networks

to predict 13C NMR chemical shifts of alkanes. The topological
description of each carbon atom was encoded using 13 descrip-
tors that correspond to embedding frequencies of rooted sub-trees.
Jurs and coworker [11–14] have published a series of papers com-
paring the results obtained by multiple linear regression analysis
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ig. 1. 2D images and unfolding step of the 25 chemical structures to give the X-m
hole series of compounds, used in the 2D alignment step.

nd feed-forward neural networks to simulate 13C NMR spectra
f keto-steroids [11], dibenzofurans [12], ribonucleosides [13], and
onosaccharides [14].
A new strategy for prediction of the 13C chemical shift is

onstruction of the QSPR models using multivariate image anal-
sis descriptors. Goodarzi et al. have reported a quantitative
tructure–property relationship study on the 13C chemical shifts
f methoxyflavonol derivatives using MIA-QSPR method [15]. They
evealed that the predictive ability of MIA descriptors is compara-
le or even superior to the Gauge Included Atomic Orbital (GIAO)
rocedure for 13C chemical shifts calculations.

Geladi and Esbensen [16] have demonstrated that image anal-
sis may provide useful information in chemistry, though the
escriptors do not have a direct physicochemical meaning, since
hey are binaries. In QSPR, images (2D chemical structures) have

hown to contain chemical information [17,18], allowing the cor-
elation between chemical structures and properties.

The present paper is focused on the application of 2D images,
hich are the proper structures of the compounds that can be

able 1
he structure of naphthalene derivatives and experimental 13C chemical shifts for 10 pos

.

Substituent X C-1 C-2 C-3 C-4 C-5

–H 128 125.9 125.9 128 12
–CH3 134 126.4 126.5 126.2 12
–C(CH3)3 145.9 123.1 125 127.4 12
–CH2Br 132 127 125 129.3 12
–CH2OH 136.2 125 125.3 128.1 12
–CF3 128 124.6 124.1 133 12
–F 159.5 109.8 126 124.2 12
–Cl 131.9 126.1 125.7 127.1 12
–Br 122.6 129.5 125.7 127.5 12
–I 99.6 138.2 127.6 129.7 12
–OH 151.5 108.7 125.8 120.7 12
–OCH3 155.3 103.6 125.7 120.1 12
–OCOCH3 146.6 118 125.3 125.9 12
–NH2 142 109.4 126.2 118.7 12
–N(CH3)2 151.7 114.7 126.5 123.4 12
–NH3

+ 124.2 121.3 125 131.4 12
–NO2 146.5 123.8 123.9 134.5 12
–CN 108.8 131 123.5 131.8 12
–CHO 130.9 136.7 124.5 134.7 12
–COCH3 134.9 128.8 124.2 132.9 12
–COOH 126.5 129.5 123.5 132.3 12
–COOCH3 127.1 130.4 124.7 133.4 12
–CON(CH3)2 134.8 123.8 125.1 128.9 12
–COCl 129.2 136.5 125.4 137.3 12
–Si(CH3)3 137.8 131 125.5 129.7 12
. The arrow in structure indicates the coordinate of a pixel in common among the

drawn with aid of any appropriate program, as descriptors in QSPR.
Then, multivariate image analysis-quantitative structure property
relationship study (MIA-QSPR) is proposed to model and predict the
13C chemical shifts of a series of naphthalene derivatives [19] using
principal component regression (PCR) and principal component-
artificial neural network (PC-ANN) modeling methods. Eigen value
ranking (EV) and correlation ranking (CR) were used to select the
most relevant set of PCs as inputs for PCR and PC-ANN model-
ing methods. Finally, obtained results using different methods are
compared.

2. Experimental

2.1. Dataset
The 13C NMR chemical shifts of 25 mono substituted naph-
thalenes (in ppm relative to TMS) were obtained from the literature
[19]. The chemical structures of these compounds and their 13C
chemical shifts have been listed in Table 1.

itions.

C-6 C-7 C-8 C-9 C-10

8 125.9 125.9 128 133.6 133.6
8.3 125.2 125.4 123.9 132.5 133.4
9.6 123.6 123.6 126.4 132 135.8
8.5 125.8 126.2 125.2 130.8 133.7
8.5 125.6 126 125.4 131 133.6
9 126.7 127.9 129 134.6 129.7
8.1 127.3 126.6 118.7 124.3 135.7
8.2 129 126.7 125.2 130.8 134.6
7.9 126.3 126.9 126 131.6 134.2
9.4 127.5 128.5 129.3 134.9 134.9
7.6 126.4 126.2 118.7 124.3 133.6
7.3 126.2 125 119.9 125.5 134.4
8 126.3 126.3 121.1 126.7 134.5
8.3 125.6 124.6 117.8 123.4 134.2
9 126.3 125.6 124.1 129.7 135.7
9.4 128 128.7 120.6 126.2 134.8
8.5 127.2 129.3 119.3 124.9 134.2
7.3 126.1 127.1 125.2 130.8 131.4
8.2 126.5 128.6 124.4 130 133.3
8.3 126.3 127.9 124.5 130.1 133.8
7.4 125 126.5 124.8 130.4 132.8
8.7 126.4 127.8 126.1 131.7 134.1
8.4 126.3 126.9 123.9 129.5 133.4
9.9 128 130.4 125.9 131.5 134.6
9.2 125.1 125.2 131.8 137.4 133.8
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Table 2
CR-PCR models for C1–C10 positions of naphthalene derivatives.

Position Model

1 134.620(±1.409) + 0.478 (±.165) PC4 − 0.508 (±0.217) PC7 + 1.067 (±0.247) PC10 + 0.778 (±0.371) PC17 − 1.364 (±0.483) PC21 + 2.886 (±0.543)P C22

2 124.112(±0.930) + 0.335 (±0.100) PC3 − 0.495 (±0.109) PC4 + 0.505 (±0.143) PC7 − 0.264 (±0.155) PC9 − 0.376 (±0.171) PC11 − 0.420 (±0.245)PC17 − 1.555 (±0.358)P C22

3 125.264(±0.107) − 0.016 (±0.009) PC2 + 0.034 (±0.013) PC4 + 0.055 (±0.014) PC5 − 0.043 (±0.016) PC7 − 0.059 (±0.020) PC11 − 0.051 (±0.021)PC12 + 0.073 (±0.027) PC16 + 0.056 (±0.028) PC17 + 0.075 (±0.031) PC19

4 128.648(±0.499) + 0.195 (±0.054) PC3 − 0.254 (±0.059) PC4 − 0.125 (±0.064) PC5 − 0.147 (±0.072) PC6 + 0.343 (±0.077) PC7 + 0.178 (±0.099) PC12 − 0.294 (±0.143) PC19 − 0.362 (±0.192) PC22

5 128.440(±0.074) + 0.020 (±0.006) PC1 + 0.035 (±0.008) PC3 − 0.022 (±0.012) PC8 + 0.042 (±0.013) PC10 − 0.030 (±0.014) PC11 + 0.042 (±0.015) PC13 + 0.040 (±0.018) PC15 + 0.045 (±0.025) PC21 − 0.062(±0.028) PC22

6 126.344(±0.133) − 0.020 (±0.010) PC1 − 0.025 (±0.012) PC2 + 0.039 (±0.022) PC8 + 0.056 (±0.022) PC9 + 0.073 (±0.031) PC14 + 0.071 (±0.035) PC17 + 0.089 (±0.036) PC18 − 0.062 (±0.038) PC19 + 0.080(±0.041) PC20 − 0.118PC21 − 0.152 (±0.058) PC23

7 126.792(±0.175) − 0.024 (±0.013) PC1 + 0.061 (±0.19) PC3 − 0.040 (±0.021) PC4 − 0.044 (±0.027) PC5 + 0.089 (±0.027)PC7 + 0.057 (±0.029) PC8 + 0.094 (±0.041) PC14 + 0.116 (±0.047) PC18 −0.115(±0.050) PC19 + 0.130 (±0.053) PC20 − 0.182 (±0.077) PC23

8 124.208(±0.358) + 0.072 (±0.027) PC1 + 0.087 (±0.032) PC2 + 0.113 (±0.038) PC3 − 0.103 (±0.042) PC4 + 0.115 (±0.046) PC5 + 0.185 (±0.055) PC7 − 0.158 (±0.063) PC10 − 0.207 (±0.084) PC14 − 0.639(±0.138) PC22

9 129.928(±0.367) + 0.070 (±0.028) PC1 + 0.080 (±0.032) PC2 + 0.100 (±0.039) PC3 − 0.123 (±0.043) PC4 + 0.131 (±0.047) PC5 + 0.188 (±0.057) PC7 − 0.171 (±0.064) PC10 − 0.224 (±0.086) PC14 −0.610(±0.142) PC22

10 133.912(±0.128) − 0.022 (±0.010) PC1 + 0.048 (±0.019) PC6 − 0.087 (±0.020) PC7 + 0.076 (±0.022) PC10 − 0.062 (±0.024) PC11 + 0.069 (±0.026) PC13 + 0.079 (±0.034) PC18 − 0.097 (±0.044) PC21 + 0.223(±0.056) PC23

Table 3
EV-PCR models for C1–C10 positions of naphthalene derivatives.

Position Model

1 134.620(±2.867) + 0.144 (±0.216) PC1 + 0.099 (±0.252) PC2 − 0.299 (±0.307) PC3 + 0.478 (±0.337) PC4 + 0.119 (±0.366) PC5 + 0.235 (±0.415) PC6

2 124.112(±1.472) − 0.031 (±0.111) PC1 + 0.042 (±0.130) PC2 + 0.335 (±0.158) PC3 − 0.495 (±0.173) PC4 − 0.114 (±0.188) PC5 − 0.213 (±0.213) PC6 + 0.505 (±0.227) PC7

3 125.264(±0.177) − 0.005 (±0.013) PC1 − 0.016 (±0.016) PC2 + 0.004 (±0.019) PC3 + 0.034 (±0.021) PC4 + 0.055 (±0.023) PC5 + 0.024 (±0.026) PC6 − 0.043 (±0.027) PC7 + 0.018 (±0.029) PC8 + 0.026 (±0.029) PC9

4 128.648(±0.636) − 0.002 (±0.048) PC1 + 0.042 (±0.056) PC2 + 0.195 (±0.068) PC3 − 0.254 (±0.075) PC4 − 0.125 (±0.081) PC5 − 0.147 (±0.092) PC6 + 0.343 (±0.098) PC7 + 0.020 (±0.104) PC8

5 128.440(±0.129) + 0.020 (±0.010) PC1 + 0.000 (±0.011) PC2 + 0.035 (±0.014) PC3 − 0.012 (±0.015)PC4 + 0.015 (±0.016) PC5 − 0.007 (±0.019) PC6 − 0.004 (±0.020) PC7 − 0.022 (±0.021)PC8 − 0.007 (±0.021) PC9

6 126.344(±0.240) − 0.020 (±0.018) PC1 − 0.025 (±0.021) PC2 + 0.020 (±0.026) PC3 − 0.005 (±0.028) PC4 + 0.008 (±0.031) PC5 − 0.018 (±0.035) PC6 + 0.029 (±0.037) PC7 + 0.039 (±0.039) PC8 + 0.056 (±0.040) PC9 + 0.019 (±0.042) PC10 + 0.024 (±0.044) PC11

7 126.792(±0.280) − 0.024 (±0.021) PC1 − 0.011 (±0.025) PC2 + 0.061 (±0.030) PC3 − 0.040 (±0.033) PC4 − 0.044 (±0.036) PC5 − 0.046 (±0.041) PC6 + 0.089 (±0.043) PC7 + 0.057 (±0.046) PC8 + 0.041 (±0.047) PC9 + 0.041 (±0.049) PC10 − 0.016 (±0.051) PC11

8 124.208(±0.627) + 0.072 (±0.047) PC1 + 0.087 (±0.055) PC2 + 0.113 (±0.067) PC3 − 0.103 (±0.074) PC4 + 0.115 (±0.080) PC5 − 0.066 (±0.091) PC6 + 0.185 (±0.097) PC7 − 0.021 (±0.103) PC8 − 0.064 (±0.105) PC9

9 129.928(±0.629) + 0.070 (0.047) PC1 + 0.080 (±0.055) PC2 + 0.100 (±0.067) PC3 − 0.123 (±0.074) PC4 + 0.131 (±0.080) PC5 − 0.067 (±0.091) PC6 + 0.188 (±0.097) PC7 − 0.014 (±0.103) PC8 − 0.080 (±0.105) PC9

10 133.912(±0.249) − 0.022 (±0.019) PC1 − .018 (±0.022) PC2 + 0.003 (±0.027) PC3 + 0.010 (±0.029) PC4 + 0.028 (±0.032) PC5 + 0.048 (±0.036) PC6 − 0.087 (±0.038) PC7 − 0.042 (±0.041) PC8 + 0.001 (±0.041) PC9
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Table 4
Calculated values of 13C chemical shifts using RC-PCR method for all carbon positions—training and validation sets.

Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

Training
–CH2Br 133.49 122.81 124.97 129.69 128.85 125.74 125.94 124.42 130.28 133.63
–CH2OH 139.36 123.34 125.61 128.49 128.87 125.46 126.24 124.58 130.16 133.67
–CF3 129.73 125.04 125.15 130.58 128.99 126.22 127.72 129.02 134.69 129.70
–Cl 134.26 128.82 125.66 130.32 127.92 128.32 126.68 126.21 132.30 134.07
–Br 123.03 129.68 125.84 127.21 127.73 127.17 126.72 123.67 129.86 134.14
–I 107.66 134.16 126.63 126.96 129.47 126.86 127.86 127.83 133.07 134.57
–OH 150.50 109.83 126.04 122.40 127.60 127.48 126.69 120.94 126.32 133.49
–OCH3 145.34 111.57 125.31 122.83 127.82 126.3 125.52 121.62 127.23 134.36
–OCOCH3 145.34 111.57 125.31 122.83 127.82 126.34 125.52 121.62 127.23 134.36
–NH3

+ 128.19 121.23 124.94 131.26 128.64 127.52 128.25 122.89 128.91 133.64
–CN 115.28 122.89 123.81 133.44 127.43 126.27 127.80 125.93 131.66 132.05
–CHO 138.95 130.57 124.86 131.19 128.21 126.50 128.42 123.57 129.12 133.87
–COCH3 130.36 126.68 123.73 131.36 128.28 126.18 128.03 124.62 130.18 134.88
–COOCH3 126.91 134.52 124.77 135.88 128.98 126.24 126.94 127.04 132.49 133.10
–COCl 143.31 137.51 125.07 137.60 129.65 127.00 129.55 125.40 131.01 134.89

Valid
–H 128.81 130.16 125.80 128.95 127.87 125.60 126.52 126.55 132.35 134.26
–CH3 127.27 126.08 126.71 127.39 127.86 125.72 125.89 124.56 130.99 133.41
–C(CH3)3 140.28 126.87 125.70 124.48 129.487 123.99 124.37 124.46 130.04 135.31
–F 163.82 110.86 126.14 123.99 127.95 127.60 127.66 118.17 124.08 135.12
–NH2 148.75 110.02 126.40 121.39 128.54 125.65 124.11 115.80 121.26 134.37
–N(CH3)2 144.98 115.81 125.92 123.785 129.02 126.79 124.95 125.53 131.38 135.90
–NO2 142.32 125.27 123.93 132.66 128.74 127.40 128.68 119.64 125.01 134.43
–COOH 118.74 128.75 123.51 130.01 127.85 125.21 126.24 124.06 130.35 133.10
–CON(CH3)2 129.22 130.54 124.51 129.68 128.46 126.52 128.50 126.57 132.14 133.75
–Si(CH3)3 129.61 128.23 125.27 131.81 128.94 124.48 124.99 130.47 136.06 133.72

Table 5
Calculated values of 13C chemical shifts using EV-PCR method for all carbon positions—training and validation sets.

Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

Training
–CH2Br 131.97 126.99 128.12 131.46 128.43 125.82 126.93 125.20 130.80 133.70
–CH2OH 136.09 124.96 127.88 127.67 128.82 125.76 125.7 125.38 130.98 133.60
–CF3 133.21 126.50 127.608 131.53 129.14 125.62 126.59 129.71 135.43 131.42
–Cl 133.34 126.63 122.13 128.37 128.32 128.41 126.09 125.40 131.03 135.00
–Br 122.86 129.59 130.51 126.57 128.11 126.22 127.10 126.03 131.64 134.28
–I 99.707 138.24 124.98 126.66 128.83 127.02 127.28 129.31 134.92 134.81
–OH 151.68 108.77 109.39 121.26 127.60 126.40 125.89 118.72 124.33 133.67
–OCH3 150.88 110.77 109.88 123.28 127.59 126.25 125.4 120.49 126.09 134.42
–OCOCH3 150.88 110.77 109.88 123.28 127.59 126.25 125.47 120.49 126.09 134.42
–NH3

+ 123.75 121.14 120.87 126.96 128.68 128.07 128.35 120.54 126.13 134.65
–CN 109.03 131.08 131.60 131.83 127.15 126.10 126.91 125.23 130.84 131.49
–CHO 130.80 136.66 135.80 134.79 128.38 126.51 128.28 124.39 129.98 133.26
–COCH3 134.81 128.77 129.46 132.59 128.39 126.30 128.29 124.49 130.09 133.77
–COOCH3 127.22 130.45 127.77 134.13 128.71 126.17 128.48 126.12 131.72 134.09
–COCl 129.27 136.53 136.57 137.62 129.73 128.04 130.02 125.91 131.51 134.64

Valid
–H 128.32 126.02 125.83 126.08 127.82 125.72 126.53 128.04 133.65 133.68
–CH3 133.50 126.22 125.96 128.14 128.02 125.42 125.10 123.83 132.42 133.27
–C(CH3)3 146.06 123.16 122.22 127.56 129.64 123.53 123.59 126.42 132.03 135.84
–F 159.28 109.72 124.58 128.64 128.75 127.95 127.81 118.67 124.26 135.79
–NH2 141.44 109.19 111.05 121.23 128.48 125.81 125.46 117.72 123.31 134.04
–N(CH3)2 151.83 114.75 115.52 122.89 129.04 126.29 125.57 124.12 129.72 135.75
–NO2 146.87 123.94 124.33 131.94 128.42 127.12 128.76 119.35 124.96 134.32

1
1
1

2

i
r
s
i
1
A
g
c

–COOH 125.75 129.23 129.08 131.50
–CON(CH3)2 134.60 123.73 123.91 128.43
–Si(CH3)3 132.33 129.001 127.87 131.74

.2. Multivariate image analysis descriptors

In the MIA-QSPR method, the descriptors are the pixels of
mages that can be two or three dimensional. These pixels are cor-
elated with dependent variables for making QSPR models. The 2D
tructures of each compound of Table 1 were systematically drawn
n the Chem Sketch program [20], and then, converted to bitmaps in

00 × 105 pixels workspace, with resolution of 81 × 81 points in.−1.
ll the drawn molecular structures were systematically fixed in a
iven coordinate. In our dataset, the pixel located at the 53 × 48
oordinate (on the carbon number 9), was used as reference in the
27.88 125.23 126.54 124.70 130.28 132.57
28.34 126.34 126.91 123.87 129.47 133.33
29.12 126.25 126.64 131.06 136.52 132.00

alignment step, as illustrated in Fig. 1. Each 2D image was read and
converted into binaries (double array in Matlab [21]). Each image of
dimension 100 × 105 pixels was unfolded to a 1 × 10,500 row and
then the 25 images were grouped to form a 25 × 10,500 matrix.
Columns with zero variance were removed to minimize memory,
reducing the size of matrix to 25 × 962.
2.3. Principal component regressions

In QSAR/QSPR studies, a regression model of the form y = Xb + e
may be used to describe a set of predictor variables (X) with a pre-
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Table 6
The statistical parameters for RC-PCR, EV-PCR and RC-PC-ANN models.

Method Set C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE R2 SE

RC-PCR Training 0.856 5.690 0.804 4.475 0.799 0.467 0.830 0.329 0.830 0.329 0.667 0.568 0.875 0.505 0.836 1.300 0.833 1.309 0.827 0.603
Valid 0.855 4.232 0.881 2.829 0.872 0.396 0.833 1.967 0.825 0.283 0.909 0.355 0.778 0.767 0.881 1.600 0.881 1.637 0.898 0.371

EV-PCR Training 0.163 13.707 0.493 7.194 0.493 0.707 0.763 2.442 0.445 0.594 0.465 0.584 0.021 0.974 0.418 2.449 0.408 2.470 0.538 0.985
Valid 0.128 10.375 0.587 5.281 0.471 0.804 0.554 3.216 0.622 0.416 0.630 0.411 0.375 0.930 0.679 2.624 0.699 2.601 0.315 0.961

RC-PC-ANN Training 0.987 1.706 0.922 2.712 0.991 0.093 0.948 1.137 0.970 0.135 0.974 0.164 0.952 0.294 0.960 0.521 0.995 0.238 0.998 0.073
Valid 0.980 2.132 0.997 0.527 0.999 0.016 0.998 0.129 0.999 0.001 0.985 0.012 0.963 0.149 0.999 0.192 0.997 0.287 0.999 0.033
Test 0.954 2.115 0.999 0.063 0.999 0.038 0.999 0.041 0.999 0.025 0.936 0.329 0.982 0.304 0.994 0.360 0.998 0.197 0.998 0.054

ChemDraw All 0.881 4.953 0.986 1.093 0.610 0.579 0.979 0.690 0.842 0.281 0.822 0.425 0.855 0.573 0.538 1.808 0.768 1.634 0.832 0.538

Table 7
Calculated values of 13C chemical shifts using RC-PC-ANN method for all carbon positions—training, validation and test sets.

Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

Training
–CH2Br 132.00 127.00 124.88 128.69 128.50 125.81 126.20 125.03 130.79 133.59
–CH2OH 136.20 125.00 125.22 128.51 128.50 125.59 126.00 125.36 130.98 133.37
–CF3 128.00 124.60 124.08 129.25 129.00 126.70 127.90 128.97 134.59 129.65
–Cl 131.90 126.10 125.68 128.36 128.20 128.97 126.70 125.29 130.76 134.56
–Br 122.60 129.50 125.69 128.42 127.90 126.33 126.90 126.00 131.58 134.16
–I 99.60 138.20 127.44 128.75 129.40 127.51 128.50 129.04 134.82 134.85
–OH 151.50 108.70 125.76 127.39 127.60 126.38 126.20 118.68 124.32 133.54
–OCH3 150.95 110.80 125.44 127.74 127.65 126.36 125.65 120.61 126.12 134.42
–OCOCH3 150.95 110.80 125.44 127.74 127.65 126.36 125.65 120.60 126.12 134.42
–NH3

+ 124.20 121.30 124.95 129.01 129.40 128.02 128.70 120.93 126.12 134.78
–CN 108.80 131.00 123.47 129.07 127.30 126.20 127.10 125.12 130.80 131.16
–CHO 130.90 136.70 124.46 129.51 128.20 126.55 128.60 124.48 129.98 133.26
–COCH3 134.90 128.80 124.05 129.23 128.30 126.35 127.90 124.26 130.12 133.66
–COOCH3 127.10 130.40 124.60 129.31 128.70 126.46 127.80 126.18 131.71 134.08
–COCl 129.20 136.50 125.39 129.90 129.90 128.00 130.40 125.71 131.48 134.59

Valid
–H 126.06 125.99 125.89 128.87 128.00 125.88 125.88 128.00 132.97 133.63
–F 154.93 109.82 126.00 128.09 128.07 127.30 126.57 118.63 124.30 135.66
–N(CH3)2 145.78 114.70 126.47 128.00 128.98 126.30 125.51 123.75 129.65 135.67
–CON(CH3)2 133.75 123.83 125.11 129.04 128.39 126.30 126.89 123.81 129.23 133.37
–Si(CH3)3 137.81 129.74 125.53 129.19 129.17 125.10 125.19 131.39 137.33 133.84

Test
–CH3 115.14 126.32 126.47 128.44 128.30 125.19 125.28 123.89 132.26 133.38
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–C(CH3)3 142.41 123.11 124.92 128.60
–NH2 129.43 110.50 126.16 127.40
–NO2 145.82 123.85 123.90 129.59
–COOH 107.03 129.13 123.52 129.29

icted variable (y) by means of a regression vector (b). However, the
olinearity, which often existed between independent variables,
reates a severe problem in certain types of mathematical treat-
ent such as matrix inversion [22]. A better predictive model can

e obtained by ortogonalization of the variables by means of princi-
al component analysis (PCA) and the consequent method is called
rincipal component regression (PCR) [23–25].

To reduce the dimensionality of the independent variable space,
limited number of principal components (PCs) are used, and

herefore a major question will arise after the PCA is, how many and
hich PCs constitute a good subset for predictive purposes? Hence,

electing the significant and informative PCs is the main problem
n almost all of the PCA-based calibration methods [26–28].

Different methods have been addressed to select the significant
Cs for calibration purposes. In the most common one which is
alled correlation ranking, the factors are ranked by their corre-
ation coefficient with the property to be correlated (a dependent
ariable) [28]. The factor with highest correlation coefficient is con-

idered as the most significant one and, subsequently, the factors
re introduced into the calibration model until no further improve-
ent of the calibration model is obtained. In the other method,
hich is called eigen value ranking, the factors are ranked in the
.60 123.62 123.47 126.24 132.01 135.68

.29 125.59 124.51 117.75 123.96 134.20

.50 127.19 128.98 119.22 124.94 134.23

.40 125.00 126.35 124.80 130.45 132.76

order of decreasing eigen values and the factors with the highest
eigen values are considered as the most significant factors.

In the present work, First PCA was carried out on data matrix
using Minitab program [29]. After achieving PCs, two types of
PCR analysis including correlation ranking based-PCR (CR-PCR) and
eigen value ranking based PCR (EV-PCR) were employed. In the CR-
PCR procedure, the scores of PCs were entered to the PCR model,
consecutively, based on decreasing their correlation with the 13C
chemical shifts. A cut off value of R2 ≥ 0.8 was used to select the
optimum number of PCs in the PCR models. The procedure for the
EV-PCR method was similar to the CR-PCR method and the entrance
of the PCs to the model was based on their decreasing eigen
values.

For regression analysis, dataset was separated into two groups:
training set including 15 compounds and validation set including 10
compounds. Training set was used for the construction of the PCR
models and then the generated models were applied to the vali-
dation set. Obtained models were summarized in Tables 2 and 3

for CR-PCR and EV-PCR methods, respectively. In all 10 CR-PCR
equations, the factor with highest correlation coefficient with
the 13C chemical shifts was considered as the most significant
one and, subsequently, the factors were introduced into the cali-
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Fig. 2. (a–j) Plot of experimental 13C chemical shifts of naphthalene derivative

ration model until R2 ≥ 0.8 is achieved. PCs with higher correlation

ave greater information about the variation in the 13C chemical
hifts. In all 10 EV-PCR equations, the factors with highest eigen
alues were considered as the most significant factors and, sub-
equently, the factors were introduced into the calibration model
inst the calculated values using RC-PC-ANN model for C-1–C-10, respectively.

until the number of factors in the EV-PCR models were identical

to the number of factors in the CR-PCR models. Finally, obtained
results using two CR-PCR and EV-PCR methods were compared.
Calculated 13C chemical shifts using CR-PCR and EV-PCR equations
were shown in Tables 4 and 5, respectively.
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Table 8
Calculated values of 13C chemical shifts using ChemDraw program.

Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10

–H 128 125.9 125.9 128 128 125.9 125.9 128 133.6 133.6
–CH3 134.9 126.8 126.9 126.5 128.6 125.6 125.8 125.5 132.6 133
–C(CH3)3 145.9 120.9 125.4 127.7 129.9 124.9 124.9 128.4 132.1 135.9
–CH2Br 132 127.4 125.4 129.6 128.8 126.2 126.6 125 130.9 133.8
–CH2OH 136.2 125.1 125.7 128.4 128.8 126 126.4 125.1 131.1 133.7
–CF3 126.1 124.6 124.5 133.3 129.3 127.1 128.3 126.2 131.8 129.8
–F 159.2 109.6 126.4 124.5 128.4 127.7 127 121.2 124.3 135.4
–Cl 132.1 127.2 126.1 127.4 128.5 129.4 127.1 124.7 130.6 134.7
–Br 122.6 130.4 126.1 127.8 128.2 126.7 127.3 127 131.7 134.3
–I 98.6 138.3 128 130 129.7 127.9 128.9 132.7 134.8 135
–OH 153.7 110.8 126.2 121 127.9 126.8 126.6 123 126.2 134.7
–OCH3 156.9 104 126.1 120.4 127.6 126.6 125.4 123.5 125.5 134.5
–OCOCH3 146.6 118.7 125.7 126.2 128.3 126.7 126.7 122.7 128.6 134.6
–NH2 143.7 109.6 127.6 119 128.6 126 125 121 123.6 134.3
–N(CH3)2 151.3 117.6 127.9 123.7 129.3 126.7 126 125.1 131 135.8
–NH3

+ 148.4 122.7 127.4 128.3 128.3 126.3 126.3 128.3 133.9 133.7
–NO2 146.5 123.8 125.3 134.8 128.8 127.6 129.7 123.2 125.6 134.3
–CN 110 132.5 124.9 132.1 127.6 126.5 127.5 123.8 131.7 131.5
–CHO 132.5 137.7 126 135 128.5 126.9 129 124.8 130.1 133.4
–COCH3 134.8 128.8 125.7 133.2 128.6 126.7 128.3 126.3 130.2 133.9
–COOH 127 129 125 132.6 127.7 125.4 126.9 125.1 132 134.5
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–COOCH3 127.6 129.9 126.2 133.7
–CON(CH3)2 134.8 123.3 126.6 129.2
–COCl 128 136 126.9 137.6
–Si(CH3)3 138.7 133.5 125.9 130

.4. Artificial neural network modeling

Because of the complexity of the relationships existed
etween the activity/property of the molecules and the struc-
ures, nonlinear modeling methods are often used to model
he structure–activity/property relationships. Artificial neural net-
orks (ANNs) as non-parametric non-linear modeling techniques
ave attracted increasingly interest in the recent years [30,3].
ultilayer feedforward neural networks (MLF-ANN) trained with

ack-propagation learning algorithm become increasingly popular
echniques [3,30–32]. The flexibility of ANN for discovering a more
omplex relationship causes that this method find wide application
n QSAR/QSPR studies, which reviewed by Duch et al. [33].

The principal component-artificial neural network (PC-ANN),
hich combines the PCA with ANN and models the non-linear

elationships between the PCs and dependent variable, was pro-
osed by Gemperline to improve the training speed and decrease
he overall calibration error [34].

At the present work, comparison of the statistical parameters for
wo RC-PCR and EV-PCR methods showed the superiority of RC-PCR

ethod over the EV-PCR method (Table 6). Therefore, we used the
Cs which were selected by RC-PCR method as input variables of
NN.

An artificial neural network with back-propagation algorithm
as constructed. Our network had an input layer, a hidden layer

nd an output layer. The input vectors were the set of PCs which
ere selected by correlation ranking procedure. The number of
odes in the input layer depended on the number of PCs in the
CR equations. The number of nodes in the hidden layer was opti-
ized through learning procedure. The training, validation and test

atasets including 15, 5, and 5 compounds, respectively, were used
o optimize the network performance. Obtained results using RC-
C-ANN method were shown in Table 7. For comparison, R2 and
tandard error (SE) of different models for training, validation and
est sets were summarized in Table 6.
. Results and discussion

Table 1 lists the names of the compounds used in this study
nd their corresponding experimental 13C chemical shift values.
126.8 128.2 126.5 133.3 134.2
.7 126.7 127.3 128.4 129.6 133.5
.2 128.4 130.8 126.2 131.6 134.7
.5 125.5 125.6 128.4 137.1 135.2

In this list the experimental 13C chemical shift values for 10 car-
bon positions have been accessed. In order to find a correlation
between MIA descriptors and these spectroscopic data, after elim-
inating the descriptors with zero variance, 962 MIA descriptors
were remained. Then, PCA was applied on the descriptors data
matrix. Twenty-three PCs were generated which were considered
as the input variables of PCR and PC-ANN models. For each car-
bon position, separate PCR models based on eigen value ranking
and correlation ranking were obtained. Obtained models were
shown in Tables 2 and 3. Calculated values of 13C NMR chemical
shifts using these RC-PCR and EV-PCR equations were indicated in
Tables 4 and 5, for training and validation sets, respectively. The sta-
tistical parameters of these models were summarized in Table 6. It
should be noted that the obtained results using CR-PCR procedure
shows superior qualities than those obtained by EV-PCR models.
CR-PCR models show good performances and could predict the 13C
chemical shifts of the related molecules with low error.

To increase the predictive ability of the obtained models, a non-
linear modeling method was employed. Typically, superior models
can be found using ANNs because they implement non-linear rela-
tionships and because they have more adjustable parameters than
the linear models. Therefore, we suggested the use of ANN as the
non-linear model. As previously mentioned, obtained results by the
CR-PCR procedure were more accurate than the EV-PCR procedure.
The order of PCs based on their decreasing correlation was shown in
equations of Table 2. Thus, these subsets of PCs were used as input
of ANN models. The calculated values of 13C chemical shifts using
ANN models were represented in Table 7 for training, validation
and test sets, respectively.

R2 and SE values using three different methods (RC-PCR, EV-PCR
and RC-PC-ANN) were summarized in Table 6. As can be seen from
this table, RC-PC-ANN model shows more predictive ability than
the PCR models. This indicates that there are nonlinear relation-
ship between PCs and 13C chemical shifts. Plots of experimental 13C
chemical shifts versus calculated values using RC-PC-ANN method

for all 10 carbon positions are shown in Fig. 2(a–j), respectively. As
it is observed, obtained models by the RC-PC-ANN method indicate
high qualities. This means that there are non-linear relationships
between the proposed MIA descriptors and the 13C chemical shifts
of the naphthalene derivatives.
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Although the main aim of the present study was to investi-
ate relationship between 2D images and 13C chemical shifts, 13C
hemical shifts of the studied compounds were calculated using
hemDraw program [35]. Obtained values were shown in Table 8.
or comparison, statistical parameters of these values were indi-
ated in Table 6. As can be seen from this table, calculated 13C
hemical shifts using RC-PC-ANN models are more accurate than
he calculated values by ChemDraw program.

Also, obtained results in this work indicated that though MIA
escriptors do not have a direct physicochemical meaning, but
ay provide useful information and are capable to predict the 13C

hemical shifts of studied compounds.

. Conclusion

As the conclusion, the proposed correlation ranking procedure
or factor selection in PC-ANN algorithm produced perfect models
or MIA-QSPR study of 13C chemical shifts of naphthalene deriva-
ives. In comparison with eigen value factor selection method, it
as obtained that the EV-PCR method could not predict 13C chem-

cal shifts, accurately. It can be concluded that factor selection
or ANN by the correlation ranking is more straightforward than
he eigen value ranking. Also, obtained results indicated that MIA
escriptors are capable to recognize the physicochemical informa-
ion and may be useful to predict 13C chemical shifts.
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